
Integer Data Types 
 
Representation 
 
Integers are represented in computers as a sequence of bits in 2’s complement form. 
There are various built in data types provided with the C/C++ compilers which has 
different storage capability. The higher the storage capability of a type, the larger the 
sequence of bits it can store and higher is the range of integers it can support. 
 
Ranges of standard data types 
 

Data Type Number of Bits Range 
Char 8 -27 to 27-1 

Unsigned Char 8 0 to 28-1 
Short 16 -215 to 215-1 

Unsigned Short 16 0 to 216-1 
Int 32 -231 to 231-1 

Unsigned Int 32 0 to 232-1 
Long 32 -231 to 231-1 

Unsigned Long 32 0 to 232-1 
 
Value Overflow 
 
What will happen if you try to store a value in a variable which is too big or too small for 
it to contain? 
 
Run the following code and you will get your answer: 
 
 

int i = 120; 
printf("Expected value: 120\tThe value we get: %d\n", i); 
i += 60; 
printf("Expected value: 180\tThe value we get: %d\n", i); 
i = -120; 
printf("Expected value: -120\tThe value we get: %d\n", i); 
i -= 60; 
printf("Expected value: -180\tThe value we get: %d\n", i); 

 
 
So never think that an addition operation will always give you a greater value or a 
subtraction operation will always give you a lesser value. 
 
* What actually happens in this case is the addition/subtraction operation produces carry 

bits which the variable is not capable of storing. Hence it is ignored and the value we 
are left with is only last 8 bits of the expected value. Remember that the value is 
considered in 2’s complement form and if the value has 1 as its MSB it is a negative 
number. 



Use of sizeof() 
 
In different compilers the size of the same data type can be different. For example in 
some compilers such as Turbo C/C++ integer data type is 16 bits and in some others it is 
32 bits. In GNU C/C++ compiler which is used by UVA integer data type is 32 bits. 
 
To know about the size of a data type in the t compiler in which your program is running 
one can use sizeof(). 
 

sizeof <expression> 
Returns the size (in bytes) of the given expression 
 
sizeof <type> 
Returns the size (in bytes) of the given data type 

 
Example: 
 

1. sizeof(long) 
2. long array[100]; 

sizeof(array) will return (100*4) 
 

* Thus sizeof() can be used in case of memset(), memcpy() 
  functions as follows: 

memset(array, 0, sizeof(array)) 
 
 
 
Use of memset() 
 
Sometimes we need to set the values of all the elements of an array. For this purpose 
memset() is a very good function. For example to set all the values of an array to zero we 
can always use: 
 

 
memset(arrayName, 0, sizeof(arrayName)) 

 

 
This is a much faster way than setting all the values by running a loop. (as the function 
directly works on a block of memory rather than an array element) 
 
But be careful about the second parameter of the array. It actually says what to put in 
each BYTE of the array. (not in each element). For example if arrayName is an array of 
integers then using memset() with the value as 1 will not set the all the values to 1. Rather 
it will set all the bytes to 1. So each integer will actually contain 
 
 

0000 0001 0000 0001 0000 0001 0000 0001 = 16843009 
 
 



Memory Limit 
 
We will limit our discussion to UVA site problems. In UVA the default memory limit for 
problems are 32 MB (unless otherwise stated in the problem description). So what will be 
the size of biggest integer array that we can use. We already know that the compiler used 
in UVA is GNU C/C++ where the size of integer is 32 bits or 4 bytes. 
 

 
32MB = 32,000,000 Bytes = 4 * 8,000,000 

 

 
Hence we can say that the biggest integer array possible is 8,000,000. But we have to 
keep some for other variables and use of the program. 
 
 
Bitwise operation 
 
The lowest data type available to us is bool / char which is 8 bits or 1 byte in length. But 
in many occasions we need to only store TURE / FALSE or 1 / 0 in a field. In these cases 
we can use bitwise operations to save memory and also to make solutions faster. But as 
we have 8 bits as the lowest available memory unit we will have to access individual bits 
by using manual bitwise operatives such as AND (&), OR (|), NOT (!). 
 
Say you want to declare an array of size X which will contain only TRUE / FALSE 
values. (e.g. for the adjacency matrix for representing a graph). But if X is beyond the 
provided memory limit you can solve the problem by using an array of size X/8 bytes by 
the use of bitwise operations. 
 
Some basic bitwise operations: 
 
 

1. Set the kth bit in variable ‘a’: 
a |= 2k 

2. Clear the kth bit in variable ‘a’: 
a &= (!(2k)) 

3. Change the kth bit in variable ‘a’: 
a ^= 2k 

 
 
* There is also a specialized container class in STL bit_vector which has the same 

interface as a normal vector container but is optimized for space efficiency. A vector 
always requires at least one byte per element, but a bit_vector only requires one bit 
per element. 

 
 



64-bit integers 
 
General Discussion 
In the Turbo C/C++ environment we don’t see any option for 64 bit integers. But in 
MSVC++ and GNU C/C++ you can use 64 bit integers. 
 

Data Type 
In GNU C/C++ In MSVC++ Number of Bits Range 

long long __int64 64 -263 to 263-1 
unsigned long long unsigned __int64 64 0 to 264-1 
 
Normally we don’t compile our code in GNU C/C++. But as the UVA uses this compiler 
we have to make our code compatible. The following is a good way of doing it. 
 
 

#ifdef ONLINE_JUDGE 
typedef long long i64; 
#else 
typedef __int64 i64; 
#endif 
 
i64 intName; 

 
 
You can easily use “i64” to represent 64-bit integers in the following part of your code. 
 
* In this case we have used “Preprocessor Directives”. The online-judge of UVA defines 

the ONLINE_JUDGE while compiling your code. You can use it to know whether your 
code is running in your own machine or in the judge machine. 

 
Print or scan 64-bit integers: 
 

In GNU C/C++ In MSVC++ 
long long value; 
 
//To Take Input 
scanf(“%lld”, &value); 
 
//To Print Output 
printf(“%lld”, value); 
 

__int64 value; 
 
//To Take Input 
scanf(“%I64d”, &value); 
 
//To Print Output 
printf(“%I64d”, value); 
 

unsigned long long value; 
 
//To Take Input 
scanf(“%llu”, &value); 
 
//To Print Output 
printf(“%llu”, value); 
 

unsigned __int64 value; 
 
//To Take Input 
scanf(“%I64u”, &value); 
 
//To Print Output 
printf(“%I64u”, value); 
 



Floating Point Errors 
 
 
Representation 
 
The most common way of representing real numbers are defined by IEEE 754 standard. 
In this representation the real numbers are defined by three parts. 
 

1. The sign bit (s) 
2. The exponent (e) 
3. The mantissa (m) 

 
Ignoring some details we can say that real numbers are represented in the format: 

(-1)s x m x 2e 
 
Single precision (float) and Double precision (double) have the following capacity 
 

Type Number of bits sign exponent mantissa 
float 32 1 8 23 

double 64 1 11 52 
 
 
Special Values 
 

1. Zero 
Zero is denoted by a special value where the mantissa and exponent both fields 
contain all zeroes. But the sign bit may contain one. Hence we have to face the 
problem with negative zeroes. Moreover as the sign bits differ -0.0 and +0.0 are 
not the same. If this negative comes in the output then your program may cause a 
Wrong Answer. One way to get rid of this is to add a very small value (epsilon = 
1e-7) to your result. 
 

2. Infinities 
An exponent of all ones and a mantissa of all zeroes represent infinity. The sign 
bit defines whether it is –∞ or +∞ 
 

3. Not a Number 
NaN represents non-real numbers. For example sqrt(-1.0) will result in such a 
number. This kind of numbers is represented by exponent of all ones and a non-
zero mantissa. 
 

4. Subnormal Numbers 
Exponent is all zero and the mantissa is non-zero. This represents a number very 
close to zero. 

 
 



Bitwise Comparison of floating point numbers 
 
The bitwise comparison of the floating point numbers will give us the result that we 
expect comparing the numbers as a whole. Notice that in floating point numbers the sign 
bit is the MSB. Hence negative and positive numbers can be compared easily by the 
MSB. Now we can consider the rest as two positive numbers. In the bit sequence next 
comes the exponent and surely the number with the greater exponent is greater no matter 
what the mantissa values are. And last of all we are left with comparing the mantissa 
values when both the exponent and sign bits are same. 
 
 
Round Off Error and Equality Check 
 
For the double precision floating point numbers we can see that we have 254 > 1016. 
Hence we can exactly represent any integer with 15 decimal digits accurately using the 
“double” data type. If the target number is beyond the limit then a floating point number 
produces a value as close as possible to the target. 
 
It is a very bad practice to check the equality of two floating point numbers using the 
normal “= =”operator. 
 
 

for(double r=0.0; r != 1.0; r+=0.1) 
printf(“*”); 

 
 
The above code should print 1.0 / 0.1 = 10 dots. But it actually goes into an infinite loop. 
The reason is that decimal 0.1 is equivalent to binary 0.0(0011). So it cannot be perfectly 
represented and the number 1.0 is never actually reached. 
 
One common way to check the equality of two floating point numbers 
 
Incorrect way Better way 
double fVal; 
 
if(fVal == 100.0) 
{ 
    …….. 
    …….. 
} 

const double eps = 1e-7; 
//Here ‘eps’ represents a very small value 
 
double fVal; 
 
if(fabs(fVal-100.0) < eps) 
{ 
    …….. 
    …….. 
} 

 
 
 
 



Here we are using a constant ‘eps’ value irrespective the value of the numbers being 
compared. It is better to use a value dependent on the values that we are comparing. 
 
 

for (double r=0.0; r<1e22; r+=1.0) 
printf("."); 

 
 
The above code does not use any equal operators and after iterating for 1022 times we 
expect it to terminate as r is increased by an integer value 1. But yet again this will not 
terminate. 1022 is a large number that a double variable cannot store accurately. When 
you add 1 to 1022 then 1 is considered such a small number that the resultant is rounded 
off to the original number. Hence after a certain value the loop variable ‘r’ never 
increases and hence the loop is never terminated. The best way of checking equality of 
two numbers is as follows: 
 
 
bool equals(double a, double b) 
{ 

if(fabs(a-b) < eps) 
return true; 

 
double v1 = b*(1-1e-10), v2 = b*(1+1e-10); 
 
return (a > min(v1, v2)) && (a < max(v1, v2)); 

} 
 
 
Rounding Off to an integer value 
 
Let we have a double value ‘a’ and an integer ‘b’: 
 
 

1. b = (int) ceil(a); //b is the nearest integer >= a 
2. b = (int) floor(a); //b is the nearest integer <= a 

 
 
Unfortunately because different problem-setters in UVA use different way of floating 
point arithmetic you may face some strange Wrong Answers. For example if we want to 
print the double variable ‘a’ up to 3 decimal spaces sometimes you have to use the 
following method 
 
 

a = a + 0.0005 + eps 
printf(“%.3lf”, a); 

 
 
But sometimes only printf(“%.3lf”, a); will work fine. 



Further Reading 
 

1. Two’s Complement : From Wikipedia 
2. Secure Coding in C++ : Integers by Robert C. Seacord 
3. Bitwise Operators and Bit Masks by Vipan Singla 
4. Hacker’s Delight by by Henry S. Warren : Basics 
5. IEEE Floating Point Standard : From Wikipedia 
6. The Aggregate Magic Algorithms 
7. Topcoder Tutorial : Integers and Reals : Part 1 
8. Topcoder Tutorial : Integers and Reals : Part 2 
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