
Some Important String Functions

The strlen() function
- get string length

The strcat() function
- concatenate two strings

The strcpy() function
- copy a string from another string.

The strcmp() function
- compare two strings

The strncmp() function
- compare parts of two strings

The strncpy() function
- copy part of a string

The strchr() function

- Find a character in a string
// crt_strchr.c
//
// This program illustrates searching for a character
// with strchr (search forward) or strrchr (search backward).
//

#include <string.h>
#include <stdio.h>

int ch = 'r';
char string[] = "The quick brown dog jumps over the lazy fox";

int main(void)
{
 char *pdest;
 int result;

 printf("String to be searched:\n %s\n", string);
 printf("Search char: %c\n", ch);

 // Search forward.
 pdest = strchr(string, ch);
 result = (int)(pdest - string + 1);
 if (pdest != NULL)

 1

 printf("Result: first %c found at position %d\n",
 ch, result);
 else
 printf("Result: %c not found\n");

 // Search backward.
 pdest = strrchr(string, ch);
 result = (int)(pdest - string + 1);
 if (pdest != NULL)
 printf("Result: last %c found at position %d\n", ch, result);
 else
 printf("Result:\t%c not found\n", ch);
}

The strstr() function
Returns a pointer to the first occurrence of a search string in a string.

#include <string.h>
#include <stdio.h>

char str[] = "lazy";
char string[] = "The quick brown dog jumps over the lazy fox";

int main(void)
{
 char *pdest;
 int result;
 pdest = strstr(string, str);
 result = (int)(pdest - string + 1);
 if (pdest != NULL)
 printf("%s found at position %d\n", str, result);
 else
 printf("%s not found\n", str);
}

The strtok() funciton
The strtok function in the string.h library can be very useful, but there are a few

caveats that need to be borne in mind. Some avoid it, some find it indespensible.

Introduction

Breaking a string down into it's component parts is one of those useful data processing
tasks that is almost always required when reading and writing information in a program.
It can also be tough to implement, so most string libraries provide a tokenizing function,
and C is no different.

 2

An Example - Processing CSV

Before we look at why this could be, we should first see what strtok actually does. In
essence, it exists to tokenize a string - turn it into a set of sub-strings, based on the
processing of 'separators'.

A typical separator is the comma. Indeed, if a file is exported from a spreadsheet
application as CSV, each field is delimited by a comma, and each line delimited by a
carriage return.

To turn a line of text into a set of fields, two operations are therefore required:

1. Swap the final carriage return for a null character
2. Translate the comma delimited fields into a set of sub-strings

The first is required because we need to lose the carriage return because it does not form
part of the data of the last field, and we need to pass strtok a null-terminated string. The
code to do this might look like:

int nLength = strlen(szString);
if (szString[nLength]-1 == '\n') {
szString[nLength]-1 = '\0';
}

Of course, one might be tempted to also test for '\r' on the basis that each line could be
terminated with a LF/CR combination, but that is system dependent and slightly out of
scope. The tokenizing process itself, might look like this:

char * tok = strtok(szString, ",");
while (tok != NULL) {
// Do something with the tok
tok = strtok(NULL,",");
}

The above will move through szString, dividing it into tokens, each delimited by a
comma. We use NULL as the first argument to strtok in the loop because otherwise, the
function will replace the string with szString each time, since it keeps a global copy in
memory for the duration.

A side effect of this is that the string kept in memory might become corrupt, or remain
allocated long after the program has finished with it, since there is no guarantee that all
the fields will be split. This makes strtok less than perfect, earning it a slightly dubious
repulation.

 3

Changing the Separators

Another curio is that we can actually change the second argument between calls - in
effect changing the separator or separators that we wish to use. In the above example, we
could use this technique to absorb the rest of the line up to the carriage return by
changing the separator once the loop has completed; rather than setting the final character
to a null.

To do this, of course, we would need to know the exact number of fields to be converted,
so as to be able to stop at the appropriate point. It is, after all only an example, and there
are probably far better reasons to want to change separators mid-processing.

Safe Use of strtok

To safeguard our use of strtok, there are two things we can do:

1. Check for null strings before the first call
2. Check the string is empty after the last call

The second is advisable, while the first is required, as strtok does not generally deal with
null pointers very elegantly.

Conclusion & Further Reading

So, strtok should come with a health warning, but it is not quite the beast that it can often
be made out to be. Quite the reverse - with careful handling it is a very useful piece of
functionality. The programmer just needs to be sure that they really need it...

The memcpy() function
- Copies a block of “n” bytes from source to destination. It can be used

to copy from one integer array to another.

#include <string.h>
#include <stdio.h>
int main(void)
{
 char buffer[] = "This is a test.", temp[100]=”12”;
 int a[5]={1,2,3,4,5}, b[5];

 printf("Before: %s\n", temp); //output: 12
 memcpy(buffer, temp, sizeof(buffer));
 memcpy(a, b, sizeof(a));//now “a” and “b” array contains same data
 printf("After: %s\n", temp); //output: This is a test.
}

 4

The memcmp() function
- Compares the first n bytes from string S1 to String S2

The memset() function
Sets buffers to a specified character.

#include <string.h>
#include <stdio.h>
int main(void)
{
 char buffer[] = "This is a test.";
 int a[20];

 printf("Before: %s\n", buffer); //output: This is a test.
 memset(buffer, '*', 4);
 memset(a, ‘0’, sizeof(a)); //initializes “a” array to 0
 printf("After: %s\n", buffer); //output: **** is a test.
}

The sprintf() function
 It can be used to convert integer or any data to character array. Function itoa() is
not supported by ANSI C. So sprintf() function can be used instead of it.

int a=12;
char str[20];
sprintf(str,”%d”,a); //str[0]=’1’, str[1]=’2’, str[2]=’\0’;
printf(“%s”,str);

The sscanf() function
 It can be used to take input from string other than standard input.

int a, b;
char str[20]=”342 543”;
sscanf(str,”%d %d”,&a, &b); //a=342, b=543
printf(“%d %d”,a,b);

-- x --

 5

	Some Important String Functions
	
	The strlen() function
	The strcat() function
	The strcpy() function
	The strcmp() function
	The strncmp() function
	The strncpy() function
	The strchr() function
	- Find a character in a string
	The strstr() function
	The strtok() funciton
	The memcpy() function
	The memcmp() function
	The memset() function
	The sprintf() function
	The sscanf() function

